Facebook Twiter Goole Plus Linked In YouTube Blogger

Navigation


Finding your way around. Getting from point A to point B.

Previous SubjectNext Subject

Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another. The field of navigation includes four general categories: land navigation, marine navigation, aeronautic navigation, and space navigation. It is also the term of art used for the specialized knowledge used by navigators to perform navigation tasks. All navigational techniques involve locating the navigator's position compared to known locations or patterns. Navigation, in a broader sense, can refer to any skill or study that involves the determination of position and direction. In this sense, navigation includes orienteering and pedestrian navigation. For information about different navigation strategies that people use, visit human navigation. Map Box

Latitude - Longitude

Orienteering is a group of sports that requires navigational skills using a map and compass to navigate from point to point in diverse and usually unfamiliar terrain, and normally moving at speed. Participants are given a topographical map, usually a specially prepared orienteering map, which they use to find control points. Originally a training exercise in land navigation for military officers, orienteering has developed many variations. Among these, the oldest and the most popular is foot orienteering. For the purposes of this article, foot orienteering serves as a point of departure for discussion of all other variations, but almost any sport that involves racing against a clock and requires navigation with a map is a type of orienteering.

US. Orienteering - Orienteering - Orienteering
Orienteering Book (amazon)

Map & Compass Handbook (amazon)

Spatial Intelligence - Environmental Awareness

Geocaching is an outdoor recreational activity, in which participants use a Global Positioning System (GPS) receiver or mobile device and other navigational techniques to hide and seek containers, called "geocaches" or "caches", at specific locations marked by coordinates all over the world.

Geo Caching - Groundspeak - Letter Boxing

Geographic Information System is a system designed to capture, store, manipulate, analyze, manage, and present spatial or geographic data. The acronym GIS is sometimes used for geographic information science (GIScience) to refer to the academic discipline that studies geographic information systems and is a large domain within the broader academic discipline of geoinformatics. What goes beyond a GIS is a spatial data infrastructure, a concept that has no such restrictive boundaries.

GPS Apps

Geolocation is the identification or estimation of the real-world geographic location of an object, such as a radar source, mobile phone, or Internet-connected computer terminal. In its simplest form geolocation involves the generation of a set of geographic coordinates and is closely related to the use of positioning systems, but its usefulness is enhanced by the use of these coordinates to determine a meaningful location, such as a street address. For either geolocating or positioning, the locating engine often uses radio frequency (RF) location methods, for example Time Difference Of Arrival (TDOA) for precision. TDOA systems often utilise mapping displays or other geographic information system. When a GPS signal is unavailable, geolocation applications can use information from cell towers to triangulate the approximate position, a method that is not as accurate as GPS but has greatly improved in recent years. This is in contrast to earlier radiolocation technologies, for example Direction Finding where a line of bearing to a transmitter is achieved as part of the process.

Orientation (geometry) is the orientation, angular position, or attitude of an object such as a line, plane or rigid body is part of the description of how it is placed in the space it is in. Namely, it is the imaginary rotation that is needed to move the object from a reference placement to its current placement. A rotation may not be enough to reach the current placement. It may be necessary to add an imaginary translation, called the object's location (or position, or linear position). The location and orientation together fully describe how the object is placed in space. The above-mentioned imaginary rotation and translation may be thought to occur in any order, as the orientation of an object does not change when it translates, and its location does not change when it rotates.

Dead Reckoning is the process of calculating one's current position by using a previously determined position, or fix, and advancing that position based upon known or estimated speeds over elapsed time and course. The corresponding term in biology, used to describe the processes by which animals update their estimates of position or heading, is path integration. Drift is the angle between the heading of the airplane and the desired track. A is the last known position (fix, usually shown with a circle). B is the air position (usually shown with a plus sign). C is the DR position (usually shown with a triangle). Dead reckoning is subject to cumulative errors. Advances in navigational aids that give accurate information on position, in particular satellite navigation using the Global Positioning System, have made simple dead reckoning by humans obsolete for most purposes. However, inertial navigation systems, which provide very accurate directional information, use dead reckoning and are very widely applied. By analogy with their navigational use, the words dead reckoning are also used to mean the process of estimating the value of any variable quantity by using an earlier value and adding whatever changes have occurred in the meantime. Often, this usage implies that the changes are not known accurately. The earlier value and the changes may be measured or calculated quantities. There is speculation on the origin of the term, but no reliable information.

Wayfinding encompasses all of the ways in which people (and animals) orient themselves in physical space and navigate from place to place. The basic process of wayfinding involves four stages: Orientation is the attempt to determine one's location, in relation to objects that may be nearby and the desired destination. Route decision is the selection of a course of direction to the destination. Route monitoring is checking to make sure that the selected route is heading towards the destination. Destination recognition is when the destination is recognized.

Mental Mapping is a person's point-of-view perception of their area of interaction. Although this kind of subject matter would seem most likely to be studied by fields in the social sciences, this particular subject is most often studied by modern day geographers. They study it to determine subjective qualities from the public such as personal preference and practical uses of geography like driving directions. Mass media also have a virtually direct effect on a person's mental map of the geographical world. The perceived geographical dimensions of a foreign nation (relative to one's own nation) may often be heavily influenced by the amount of time and relative news coverage that the news media may spend covering news events from that foreign region. For instance, a person might perceive a small island to be nearly the size of a continent, merely based on the amount of news coverage that he or she is exposed to on a regular basis. In psychology, the term names the information maintained in the mind of an organism by means of which it may plan activities, select routes over previously traveled territories, etc. The rapid traversal of a familiar maze depends on this kind of mental map if scents or other markers laid down by the subject are eliminated before the maze is re-run.

Geography is a field of science devoted to the study of the lands, the features, the inhabitants, and the phenomena of Earth.

Geography IQ
Geography
Smarty Pins with Google
Google Earth Explore

Topography is the study of the shape and features of the surface of the Earth and other observable astronomical objects including planets, moons, and asteroids. The topography of an area could refer to the surface shapes and features themselves, or a description (especially their depiction in maps).

Topographical Disorientation is the inability to orient oneself in one's surroundings as a result of focal brain damage. This disability may result from the inability to make use of selective spatial information (e.g., environmental landmarks) or to orient by means of specific cognitive strategies such as the ability to form a mental representation of the environment, also known as a cognitive map. It may be part of a syndrome known as visuospatial dysgnosia.

Big Dipper Celestial Navigation is the ancient science of position fixing that enables a navigator to transition through a space without having to rely on estimated calculations, or dead reckoning, to know their position. Celestial navigation uses "sights," or angular measurements taken between a celestial body (the sun, the moon, a planet or a star) and the visible horizon. The sun is most commonly used, but navigators can also use the moon, a planet, Polaris, or one of 57 other navigational stars whose coordinates are tabulated in the nautical almanac and air almanacs. Celestial navigation is the use of angular measurements (sights) between celestial bodies and the visible horizon to locate one's position on the globe, on land as well as at sea. At a given time, any celestial body is located directly over one point on the Earth's surface. The latitude and longitude of that point is known as the celestial body’s geographic position (GP), the location of which can be determined from tables in the Nautical or Air Almanac for that year. The measured angle between the celestial body and the visible horizon is directly related to the distance between the celestial body's GP and the observer's position. After some computations, referred to as sight reduction, this measurement is used to plot a line of position (LOP) on a navigational chart or plotting work sheet, the observer's position being somewhere on that line. (The LOP is actually a short segment of a very large circle on the earth which surrounds the GP of the observed celestial body. An observer located anywhere on the circumference of this circle on the earth, measuring the angle of the same celestial body above the horizon at that instant of time, would observe that body to be at the same angle above the horizon.) Sights on two celestial bodies give two such lines on the chart, intersecting at the observer's position (actually, the two circles would result in two points of intersection arising from sights on two stars described above, but one can be discarded since it will be far from the estimated position—see the figure at example below). Most navigators will use sights of three to five stars, if they're available, since that will result in only one common intersection and minimize the chance for error. That premise is the basis for the most commonly used method of celestial navigation, and is referred to as the 'altitude-intercept method'. There are several other methods of celestial navigation which will also provide position finding using sextant observations, such as the noon sight, and the more archaic lunar distance method. Joshua Slocum used the lunar distance method during the first ever recorded single-handed circumnavigation of the world. Unlike the altitude-intercept method, the noon sight and lunar distance methods do not require accurate knowledge of time. The altitude-intercept method of celestial navigation requires that the observer know exact Greenwich Mean Time (GMT) at the moment of his observation of the celestial body, to the second—since every four seconds that the time source (commonly a chronometer or in aircraft, an accurate "hack watch") is in error, the position will be off by approximately one nautical mile.

Marine Sextant Latitude - Longitude

Marine Sextant (youtube)

Why we see the same Stars? (star charts)

Protractor (is a measuring instrument, typically made of transparent plastic or glass, for measuring angles. Most protractors measure angles in degrees (°). Radian-scale protractors measure angles in radians. Most protractors are divided into 180 equal parts. They are used for a variety of mechanical and engineering-related applications, but perhaps the most common use is in geometry lessons in schools. Some protractors are simple half-discs. More advanced protractors, such as the bevel protractor, have one or two swinging arms, which can be used to help measure the angle.


Which way is North ?

How to tell which way is North using the Sun

The Directions below are for the Northern Hemisphere.
In the Southern Hemisphere it's the Opposite (North is now South)

1: Place a 3' long stick in the ground firmly
2: Mark the end of the shadow from the 3' long stick with a smaller stick.
3: Now wait around 15 minutes.
4: Use another small stick to mark where the end of the shadow is now.
5: Lay another stick on the ground so that it touches both small sticks.
6: Place your left foot towards the first small stick marker.
7: Place your right foot towards the second small stick marker.
8: With your body facing the 2 small sticks used to mark the ends of the shadow you are now facing north. Your Right is east, your left is west and behind you is south.

Note:
At 12 noon your shadow will be facing North in the Northern Hemisphere

Finding North without a compass #1 (youtube)

Navigate using the Sun Diagram

Another way using the Sun to tell Direction

If you have a digital watch with no hour & minute hand then just replicate a watch with sticks to match the time on your digital watch.

1: Point the hour hand at the sun.
2: Half way between the hour hand and 12 noon will be do south.
(If you are in the southern Hemisphere the it would be north)

When facing north, your Right is East, your Left is West.

At Night know how to use the Stars and Moon to tell North, but of course it's always best to carry a Compass.

The North Star is the last star in the handle of the Little Dipper constellation.
You can also find the North Star by using the Big Dipper constellation.
The outermost stars of the cup of the Big Dipper forms a straight line that always "points" to the North Star or Polaris.
Find True North Without a Compass (wikihow)
Tell Time Without a Clock
Natural Navigation
 
Mapping Tools

Hiking and Trails Information



The Thinker Man